FPGA SDR(20)EP2C5T144 AM/FMラジオ
2020/05/19 追記:q <= adc * -sin に修正しました。
2018/07/21 追記:PM-FM変換を修正しました。
自作ATAN2ができたので、Cyclone II EP2C5T144でもAM/FMラジオを作ってみました。評価版のIPを使わずに自作NCO、自作CICフィルタ(可変間引き率版)、自作FIRフィルタを使っているので、ダウンロードケーブル無しで動作します。
Cyclone II EP2C5T144のAMの音はCyclone IV EP4CE6E22に比べてノイズが大きいので、FET(2SK241)一段の高周波増幅回路を追加しました。
こちらのFMラジオと同様に、MegaWizardのALTPLLを使って50MHzのクロック入力から70MHzのクロックを作ります。NCOを10MHzに設定すれば80MHz(東京FM)を受信できます。
AM復調はI * I + Q * Qを計算してMegaWizardのALTSQRTに渡しています。
FM復調は自作ATAN2でPM復調した位相の差分を取っています。諸々の補正を省略しています。
`define CYCLE_1SEC 50000000 module SPIbridge ( input wire RST_N, input wire CLK, input wire SPI_NSS, input wire SPI_SCLK, output wire SPI_MISO, input wire SPI_MOSI, output wire [2:0] LED, input wire [7:0] ADC, output wire ENCODE, output reg [9:0] DAC, output wire DACCLK ); localparam CIC_WIDTH = 19; localparam FIR_WIDTH = 10; localparam PI = 11'sb0011_0010_010; // pi = 0011 . 0010 0100 0011 1111 0110 1010 wire clk; wire [31:0] pio0; wire [31:0] pio1; wire fm; wire [10:0] rate; wire [3:0] gain; reg [9:0] uadc_r; wire signed [9:0] adc; wire signed [9:0] sin; wire signed [9:0] cos; reg signed [18:0] i; reg signed [18:0] q; wire signed [CIC_WIDTH-1:0] icic; wire icic_valid; wire signed [CIC_WIDTH-1:0] qcic; wire qcic_valid; wire signed [FIR_WIDTH-1:0] ifir; wire ifir_valid; wire signed [FIR_WIDTH-1:0] qfir; wire qfir_valid; reg signed [19:0] i2q2; wire signed [9:0] mag; wire signed [FIR_WIDTH-1:0] phase; reg signed [FIR_WIDTH-1:0] phase_r; wire signed [FIR_WIDTH:0] phase_diff; reg signed [FIR_WIDTH:0] freq; wire [9:0] dac; reg [2:0] dacclk; pll pll_inst ( .inclk0 (CLK), .c0 (clk) ); QsysCore QsysCore_inst ( .clk_clk (clk), .reset_reset_n (RST_N), .spi_slave_to_avalon_mm_master_bridge_0_export_0_mosi_to_the_spislave_inst_for_spichain (SPI_MOSI), .spi_slave_to_avalon_mm_master_bridge_0_export_0_nss_to_the_spislave_inst_for_spichain (SPI_NSS), .spi_slave_to_avalon_mm_master_bridge_0_export_0_miso_to_and_from_the_spislave_inst_for_spichain (SPI_MISO), .spi_slave_to_avalon_mm_master_bridge_0_export_0_sclk_to_the_spislave_inst_for_spichain (SPI_SCLK), .pio_0_external_connection_export (pio0), .pio_1_external_connection_export (pio1) ); assign LED = ~pio0[2:0]; assign fm = (pio1 == 0 || pio1 >= 32'd368140054) ? 1 : 0; // (pio1 >= 6MHz) ? FM : AM assign rate = fm ? 64 : 1024; // fm ? 1094kSPS : 68kSPS assign gain = fm ? 1 : 4; // pio0[3:0]; always @(posedge clk) begin uadc_r <= { ADC, 2'b00 }; end assign ENCODE = clk; assign adc = (uadc_r[9] == 0) ? uadc_r + 10'h200 : uadc_r - 10'h200; MyNCO nco_inst ( .clk (clk), .reset_n (RST_N), .clken (1'b1), .phi_inc_i (pio1), .fsin_o (sin), .fcos_o (cos), .out_valid () ); always @(posedge clk) begin i <= adc * cos; q <= adc * -sin; end MyCIC cic_inst_i ( .clk (clk), .reset_n (RST_N), .rate (rate), .in_error (2'b00), .in_valid (1'b1), .in_ready (), .in_data (i), .out_data (icic), .out_error (), .out_valid (icic_valid), .out_ready (1'b1) ); MyCIC cic_inst_q ( .clk (clk), .reset_n (RST_N), .rate (rate), .in_error (2'b00), .in_valid (1'b1), .in_ready (), .in_data (q), .out_data (qcic), .out_error (), .out_valid (qcic_valid), .out_ready (1'b1) ); MyFIR fir_inst_i ( .clk (clk), .reset_n (RST_N), .ast_sink_data (icic[CIC_WIDTH-1 -gain -: FIR_WIDTH]), .ast_sink_valid (icic_valid), .ast_sink_error (2'b00), .ast_source_data (ifir), .ast_source_valid (ifir_valid), .ast_source_error () ); MyFIR fir_inst_q ( .clk (clk), .reset_n (RST_N), .ast_sink_data (qcic[CIC_WIDTH-1 -gain -: FIR_WIDTH]), .ast_sink_valid (qcic_valid), .ast_sink_error (2'b00), .ast_source_data (qfir), .ast_source_valid (qfir_valid), .ast_source_error () ); always @(posedge clk) begin if (ifir_valid) begin i2q2 <= ifir * ifir + qfir * qfir; end end sqrt sqrt_inst ( .radical (i2q2), .q (mag), .remainder () ); MyATAN2 MyATAN2_inst ( .clk (clk), .areset (~RST_N), .x (ifir), .y (qfir), .q (phase), .en (ifir_valid) ); always @(posedge clk) begin if (ifir_valid) begin phase_r <= phase; if (phase_diff > PI) begin freq <= phase_diff - (PI <<< 1); end else if (phase_diff < -PI) begin freq <= phase_diff + (PI <<< 1); end else begin freq <= phase_diff; end end end assign phase_diff = phase - phase_r; assign dac = freq[FIR_WIDTH-1 -: 10]; always @(posedge clk) begin if (ifir_valid) begin DAC <= fm ? ((dac[9] == 0) ? dac + 10'h200 : dac - 10'h200) : mag; end dacclk = { dacclk[1:0], ifir_valid }; end assign DACCLK = dacclk[2] | dacclk[1] | dacclk[0] | ifir_valid; endmodule
リソースはこんな感じです。